back like those of a Seal, I found great difficulty, from the conformation of the skeleton, in comprebending how this could be effeeted. Mr. Snow writes me that "the hind flippers, when the Otter is travelling on shore, are brought under the body, but doubled up backwards, somewhat after the manner of the rough sketch enclosed, which, I may mention, has been drawn by a friend -who never has seen a Sea-Otter-from my description. This sketch [which forms the basis of the figure, p. 235] fairly represents the animal, but the hind quarters are not quite correct.
"The human hand will serve as a good illustration of the hind flippers of the Otter, the under part of the flipper corresponding to the palm of the hand. Imagine a hand, the fingers united by a thin web, the whole surface on both sides, with the exeeption of five small, black, naked spots on the balls of the finger, covered with hair. The Otter apparently has little or no museular power in the finger part of its flippers, and when attempting to walk, or rather jump, along on shore, this part is doubled uuder the portion corresponding to the knuckles of the hand."

## 7. On the Hyoid Bones of Nestor meridionalis and Nanodes discolor. By St. George Mivart, M.D., F.R.S.

[Received January 15, 1896.]
In a paper read ${ }^{1}$ before the Zoological Society on March 5th last, I described the structure of the hyoids of certain Lories, and compared them with that of Psittacus erithacus and that of Stringops habroptilus.

Therein I called attention to the processes which I named parahyal processes, and which, so far as I have been able to ascertain, seem peculiar to the Psiriacr. I pointed out that the three genera of Lories described and fignred, namely, Eos, Lorius, and Trichoglossus, differed from other Parrots in having these parahyal processes much prolonged and distally united, eaeh pair forming a singularly delicate osseous structure which 1 termed the parahyal arch.

Subsequently, when considering the form of the tongue, I thought it would be very interesting to ascertain whether the two genera, the prolonged lingual papille of which have a eertain resemhlance to those of the Lorimen, did, or did not, also possess a parahyal areh.

This question, through the kindness of Mr. F. E. Beddard, F.R.S., I have lately been able to determine by examining the hyoid structure of Nestor meridionalis and Nanodes discolor.

In the hyoid of Nestor, the basihyal (b, fig. 1, p. 237) is long and narrow, much as in the genera of Lommes before described. The upper end of its anterior articular surface does not project so much preaxiad as does its ventral lip. The latter is narrow and pointed,

[^0]while the former is laterally expanded and bears dorsally a cup-like depression (c). The binder half of the basihyal bears dorsally a rounded antero-posteriorly extending ridge. The parahyal processes arise much as they do in the Lories previously described, but are exceedingly slender and meet together at a symphysis which is situated about midway between the anterior and posterior extremities of the basihyal. The symphysis is connected with the preaxial part of the basihyal by a rather vertically broad osseous band which passes obliquely backward to it from just behind

Tig. 1.


Hyoid of Nestor meridionalis. A. Dorsal nspect; B. Ventral aspect; C. Lateral aspeot.
b. Basilyyal.
e. Entoglossum.
c. Cup-like conoavity.
al. Anterior lateral process.
pl. Posterior lateral process.
dl. Dorsal lateral process.
p. Parahyal arch.
3. Its aymphysis.
hb. Hypobranchial.
cb. Oeratobranchial.
u. Urohyal, its larger proximal part.
$u d$. Urohyal, its smaller distal part.
the cup-like depression above noticed. Each lateral half of the parahyal arch has, medianly, a gentle outward curve.

The urohyal is decidedly longer than in the Lories, and consists of two parts-(1) a longer, proximal portion ( $u$ ), which somewhat expands to its termination, where it is truncated; and (2) a very much smaller distal portion ( $u d$ ), about half the length of the proximal part.
It may well be that a distinct distal part of the urohyal also existed in the species before described, but had become detached, since as to several of them it was remarked that the urohyal was truncated at the hinder end. .

The entoglossum (e) differs greatly from that of the Lorides before described in that it is relatively, as well as absolutely, much longer and more slender. Each lateral half, each entoglossal, bas the part in front of the isthmus, which joins it to its fellow, more than twice the length of the part behind the isthmus. The anterior parts of the two entoglossals are slender, curve outward from each other towards their preaxial ends, and terminate almost in a point. Just in front of the median bony isthmus the ventral border of the entoglossal sends downward and outward a marked process (al), the anterior lateral process; behind this is a sharp but very narrow concavity, bounded postaxially by a process (pl) which extends slightly downward and much inward to join its fellow of the opposite side, and so forms the concavo-convex articular surface for junction with the concavo-convex articular surface of the front end of the basihyal.
The part of each entoglossal behind the isthmus curves a little upward and inward, and then downward and outward, terminating in a slightly rounded extremity. At the summit of the curve there is a slight prominence ( $d l$ ) on the dorsal margin, which may be called the dorsal lateral process.

The hypobranchials are about as elongated as in Lorius ${ }^{1}$, but nearly straight.

The ceratobranchials are about half length of the hypobranchials, and are slightly curved concave mesiad.

Thus the genus Nestor shows a very interesting, but bardly surprising, affinity to the Lorides as regards the structure of the hyoid. It has a parahyal arch, but that arch is remarkable for its slenderness, as the entoglossals are distinguished by their length and slenderness, and differ decidedly in form from those of Eos, Lorius, and Trichoglossus. Thus considered, the Nestors may be thought to represent the Lories in the New Zealand region.
The interest I felt, however, in examining the hyoid of Nestor was greatly exceeded when I turned to the examination of that of Nanodes, formerly known as Lathamus.
The true position of this species and its relationship or nonrelationship to the Lories bave been matters of controversy,

[^1]and were considered by our former Prosectors, Garrod ${ }^{1}$ and Forbes ${ }^{2}$.

Their opinion was against its Lorine affinity, and in my work (now nearly complete) on the Lonides I have excluded it from that family.

Fig. 2.


C

Hyoid of Lathamus discolor. A. Dorsal aspect; B. Ventral aspect; C. Lateral aspect.

> b. Basihyal.
> c. Entoglossum.
> c. Oup-like concavity.
> al. Anterior lateral process.
> pl. Posterior lateral process.
p. Parahyal process.
hb. Hypobranchial.
cb. Ceratobranchial.
u. Urohyal.

The hyoid of Nanodes justifies these judgments, for the parahyal processes, though elongated, do not meet to form an arch, and the entoglossum is peculiar and different in form from those of the Lonime previously examined.

The basihyal (b) bears a singularly deep depression on its dorsal surface on either side just belind the origin of each parahyal process ( $p$ ). The processes are long and slender, and curre slightly towards each other distally, but, as already said, do not
${ }^{1}$ See P. Z.S. 1873, pp. 466, 634, and 1874, p. 587.
${ }^{2}$ See P. Z. S. 1879, pp. 168, 171, 174, pl. xpi. figs. 1, 2, 8, 10, 12.
meet. On its ventral surface the hinder part of the basihyal is concave, the concavity being bounded on either side by a marked, oblique marginal ridge, these two ridges meeting to coalesce with the urohyal ( $u$ ), which is short and straight.

The entoglossum (e) has its anterior parts rather slender, and its posterior parts greatly expanded transversely. The anterior part of each entoglossal has its dorsal margin slightly concave. Its ventral margin develops a marked anterior lateral process (al), separated by a marked concavity from ( $p l$ ) the posterior lateral process. The posterior balf of each entoglossal is greatly expanded, and its surface, which looks outward and downward, is strongly concave. Its dorsal margin is convex and rounded, but shows no marked dorsal lateral process.

The hypobranchials are rather short and stout compared with those of Nestor, but they are mainly remarkable for being deeply grooved antero-posteriorly on their dorsal surface; they are very slightly curved.

The ceratobranchials are extremely short bones.
My bope is to be able on some future occasion to describe certain other Psittacine hyoids.

February 18, 1896.
Prof. G. B. Howes, F.Z.S., in the Chair.
Mr. Arthur Thomson, the Society's Head Keeper, exhibited a series of specimens of varions Insects reared in the Insect-house in the Society's Gardens during the past year, and read the following Report on the subject:-

Report on the Insect-house for 1895.
Examples of the following species of Insects have been exhibited in the Insect-honse during the past season:-

Silk-producing Bombyces and their Allies.
Asiatic.

Attacus atlas.
——cynthia.

- ricini.
- pernyi.

Antherca mylitta.

* Exhibited for the first time.

American.

Attacus leberri. Samia cecropia. Actias luna. Telea polyphemus.

African.
Attacus mythinuna.

* Antherca wahlbergi.
*-belina.
-menippe.
Bunca caffraria.

Telea promethea. Hyperchiria io. *- janus.

* Urota sinope. Cyrtogone herilla. Lasiocampa monteiri. Eudcemonia argus.

Diurnal Lepidoptera.
European.

Papilio podalirius.

- machnon.

Thais cerisyi. Doritis apollinus.

American,
Papilio ajar. - cresphontes. - asterias.

Melitca cinxic. Vanessa antiopa. - polychlorus.

Limenitis disippus.
*-ursula.

Nocturnal Lepidoptera.

Smerinthus populi.

- exccccatus.

Sphinx ligustri.
-pinastri.

- celeus.

Deidamia inscriptus.
Deilephila euphorbia.

Darapsa myron.
*Ampelophaga versicolor.

* Daremma undulosa.

Ceratomia anyntor.
Eacles imperialis.
Saturnia pyri.
-_carpini.

* Exhibited for the first time.

Of the lepidopterous insects which I have the honour to place before the Meeting this evening, the following are exhibited for the first time :-Limenitis ursula, Ampelophaga versicolor, and Darcmma undulosa, from North America; Hyperchiria janus, from South America; Caligula simla, from India; Rhodia fugax, from Japan; Anthercea wahlbergi, from West Africa; Anthercea belina and Urota sinope, from South Africa.

The two specimens of Limenitis ursula were reared from hibernating larvo and were received along with the larvo of Limenitis disippus, of which species I generally get a supply every year. These larvo emerge from the egg in the autumn and immediately proceed to roll themselves up in the leaves of a species of willow, and in that condition pass the winter. In the spring, as soon as

Proo. Zool. Soc.-1896, No. XVI.
the young leaves appear, they commence to feed. Last season the young larvo of $L$. disippus appeared on the 24th of April, and on the 30 th passed into the second stage, on the 7th May into the third stage, and on the 13th iuto the fourth stage, turned to pupa on the 18th, and the first butterfly appeared on May 22nd. It was not until the perfect insects appeared that examples'of another species were to be detected amongst them, so that the larva of Limenitis ursula and its mode of life must closely resemble those of L. disippus.

I have again the pleasure of exhibiting a pair of Eudcemonia argus, trom Sierra Leone, and I may here mention that, besides the usual differences in the antennæ, the male has only four spots on the hind wings, and the female has always five.

The specimens of Rhodia fugax emerged from cocoons deposited in the Insect-house by the Hon. Walter Rothschild, T.Z.S. The larve were reared, I believe, in the neighbourhood of Richmond, on willow, from ova imported from Japan. I had some ova of this species, but the young larvo would not feed and all died. One peculiarity of this larva is, that it makes a squeaking noise when disturbed.

The specimen of Attacus mythimna is the second example of this beautiful species exhibited before the Society. This species was originally described and figured, P. Z. S. 1849, p. 40, pl. vii. fig. 3, as were also Saturnia belina and Urota sinope. Of these last two species males only were figured. The specimens exhibited are all females.

Of Orthoptera an example of a very curious locust, Petasia spumans, was brought home in December and presented to the Society by Mr. Robert Ganthony, who obtained it from Krugersdorp Falls, near Johannesburg, Transvaal. It fed upon watereress and chewed apple, but I ain sorry to saydid not live very long in England.

The following papers were read :-

1. On the Butterflies obtained in Arabia and Somaliland by Capt. Chas. G. Nurse and Col. J. W. Yerbury in 1894 and 1895. By Ahtilur G. Butler, Ph.D., Senior Assistant-Keeper of Zoology, Natural History Museum.
[Received January 29, 1896.]
(Plate X.)
Although the collections now received add only a very few species to the lists of Butterflies published in my papers on the Lepidoptera of Aden and Somaliland (P. Z. S. $1884 \& 1885$ ), they are of considerable interest, inasmuch as they contain intermediate forms between species litherto regarded as distinct.

[^0]:    ${ }^{2}$ See P. Z. S. 1895, pp. 162-174, figs. 1 to 6.

[^1]:    ${ }^{1}$ P. Z.S. 1885 , p. 168, fig. 3.

